EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies
نویسندگان
چکیده
This work presents EddyNet, a deep learning based architecture for automated eddy detection and classification from Sea Surface Height (SSH) maps provided by the Copernicus Marine and Environment Monitoring Service (CMEMS). EddyNet consists of a convolutional encoder-decoder followed by a pixelwise classification layer. The output is a map with the same size of the input where pixels have the following labels {’0’: Non eddy, ’1’: anticyclonic eddy, ’2’: cyclonic eddy}. Keras Python code, the training datasets and EddyNet weights files are open-source and freely available on https://github.com/redouanelg/EddyNet.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملComputationalMammography usingDeepNeuralNetworks
Automatic tissue classification from medical images is an important step in pathology detection and diagnosis. Here, we deal with mammography images and present a novel supervised deep learning based framework for region classification into semantically coherent tissues. The proposed method uses Convolutional Neural Network (CNN) to learn discriminative features automatically. We overcome the d...
متن کاملSqueeze-SegNet: A new fast Deep Convolutional Neural Network for Semantic Segmentation
The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmenta...
متن کاملLearn to segment single cells with deep distance estimator and deep cell detector
Single cell segmentation is critical and challenging in live cell imaging data analysis. Traditional image processing methods and tools require time-consuming and labor-intensive efforts of manually fine-tuning parameters. Slight variations of image setting may lead to poor segmentation results. Recent development of deep convolutional neural networks(CNN) provides a potentially efficient, gene...
متن کاملAdvanced Steel Microstructure Classification by Deep Learning Methods
The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which opens doors for huge uncertainties. Since the microstructure could be a combination of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.03954 شماره
صفحات -
تاریخ انتشار 2017